If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-13=0
a = 5; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·5·(-13)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{65}}{2*5}=\frac{0-2\sqrt{65}}{10} =-\frac{2\sqrt{65}}{10} =-\frac{\sqrt{65}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{65}}{2*5}=\frac{0+2\sqrt{65}}{10} =\frac{2\sqrt{65}}{10} =\frac{\sqrt{65}}{5} $
| 10+y.y=44 | | 16-5n=1 | | 2y-54=-y+21 | | 4b-10=22 | | 2=|r-7| | | K/8-k=-20 | | -4a-1=-1+7aa= | | 3x-9=5x-4x= | | M4=m-11 | | 1x=0x | | 6a-3=27 | | 11a^2+16a-415=0 | | x=0.384615384 | | 28-y=y+3 | | 7x-3x=2-9 | | x/12-3=-3 | | 28-3y=y | | 2x+43+(5x+32)=180 | | 2,9x=456,2 | | 6x+7=24 | | Y=x2*5/L*K | | 4x+6=3x/9 | | 10(x^2)+12x-288=0 | | (x-986)=0 | | X^2+12x*36=0 | | 5x+x=150/2+3 | | 3x+8=8x-5 | | 15x+1=3x+10 | | 2x(4x+3)=10x-3 | | 10^15x+1=10^16 | | 5x+35=46 | | 6x=4x=90 |